Математическая морфология
Пусть дано евклидово пространство $E^{N}$, на множестве объектов (подмножеств) которого введены отношения включения ($\subset )$, объединения ($\cup )$ и пересечения ($\cap )$. Рассмотрим некоторое преобразование $\Psi : E^{N}\to E^{N}$ (оператор $\Psi )$.
Оператор $\Psi $ называется увеличивающим (increasing), если $$ X\subset Y\Rightarrow \Psi (X)\subset \Psi (Y), \qquad X,Y\subset E^{N}, $$ то есть оператор сохраняет отношение принадлежности.
Оператор $\Psi $ называется дилатацией (расширением), если $$ \Psi (\mathop\cup\limits_i X_{i}) = \mathop\cup\limits_i \Psi (X_{i}), \:\forall X_{i}\subset E^{N}, $$ то есть оператор сохраняет объединение.
Аналогично, оператор, сохраняющий пересечение, называется эрозией (сжатием), если $$ \Psi (\mathop\cap\limits_i X_{i})=\mathop\cap\limits_i (\Psi (X_{i})), \forall X_{i}\subset E^{N}. $$ Оператор называется экстенсивным, если $\Psi (X)\supseteq X$, и антиэкстенсивным, если $$ \Psi (X)\subseteq X. $$ При рассмотрении последовательного применения операторов вводятся понятия:
- усиливающий оператор $\Psi (\Psi (X))\supseteq \Psi (X)$;
- ослабляющий оператор $\Psi (\Psi (X))\subseteq \Psi (X)$;
- равносильный оператор $\Psi (\Psi (X)) = \Psi (X)$.
Морфологическими фильтрами называется множество операторов, являющихся одновременно равносильными и увеличивающими.