Преобразование Фурье. Линейная фильтрация в частотной области

Материал из Техническое зрение
Перейти к: навигация, поиск

Линейная фильтрация изображений может осуществляться как в пространственной, так и в частотной области. При этом считается, что "низким" пространственным частотам соответствует основное содержание изображения - фон и крупноразмерные объекты, а "высоким" пространственным частотам - мелкоразмерные объекты, мелкие детали крупных форм и шумовая компонента.

Традиционно для перехода в область пространственных частот используются методы, основанные на $\textit{преобразовании Фурье}$. В последние годы все большее применение находят также методы, основанные на $\textit{вейвлет-преобразовании (wavelet-transform)}$.

Содержание

Преобразование Фурье.

Преобразование Фурье позволяет представить практически любую функцию или набор данных в виде комбинации таких тригонометрических функций, как синус и косинус, что позволяет выявить периодические компоненты в данных и оценить их вклад в структуру исходных данных или форму функции. Традиционно различаются три основные формы преобразования Фурье: интегральное преобразование Фурье, ряды Фурье и дискретное преобразование Фурье.

Интегральное преобразование Фурье переводит вещественную функцию в пару вещественных функций или одну комплексную функцию в другую.

Вещественную функцию $f(x)$ можно разложить по ортогональной системе тригонометрических функций, то есть представить в виде

$$ f\left( x \right)=\int\limits_0^\infty {A\left( \omega \right)} \cos \left( {2\pi \omega x} \right)d\omega -\int\limits_0^\infty {B\left( \omega \right)} \sin \left( {2\pi \omega x} \right)d\omega , $$

где $A(\omega )$ и $B(\omega )$ называются интегральными косинус- и синус-преобразованиями:

$$ A\left( \omega \right)=2\int\limits_{-\infty }^{+\infty } {f\left( x \right)} \cos \left( {2\pi \omega x} \right)dx; \quad B\left( \omega \right)=2\int\limits_{-\infty }^{+\infty } {f\left( x \right)} \sin \left( {2\pi \omega x} \right)dx. $$

Ряд Фурье представляет периодическую функцию $f(x)$, заданную на интервале $[a,b]$, в виде бесконечного ряда по синусам и косинусам. То есть периодической функции $f(x)$ ставится в соответствие бесконечная последовательность коэффициентов Фурье

$$ f\left( x \right)=\frac{A_0 }{2}+\sum\limits_{n=1}^\infty {A_n } \cos \left( {\frac{2\pi xn}{b-a}} \right)+\sum\limits_{n=1}^\infty {B_n \sin \left( {\frac{2\pi xn}{b-a}} \right)} , $$

где

$$ A_n =\frac{2}{b-a}\int\limits_a^b {f\left( x \right)} \cos \left( {\frac{2\pi nx}{b-a}} \right)dx; \quad B_n =\frac{2}{b-a}\int\limits_a^b {f\left( x \right)} \sin \left( {\frac{2\pi nx}{b-a}} \right)dx. $$

Дискретное преобразование Фурье переводит конечную последовательность вещественных чисел в конечную последовательность коэффициентов Фурье.

Пусть $\left\{ {x_i } \right\}, i= 0,\ldots, N-1 $ - последовательность вещественных чисел - например, отсчеты яркости пикселов по строке изображения. Эту последовательность можно представить в виде комбинации конечных сумм вида

$$ x_i =a_0 +\sum\limits_{n=1}^{N/2} {a_n } \cos \left( {\frac{2\pi ni}{N}} \right)+\sum\limits_{n=1}^{N/2} {b_n \sin \left( {\frac{2\pi ni}{N}} \right)} , $$

где

$$ a_0 =\frac{1}{N}\sum\limits_{i=0}^{N-1} {x_i } , \quad a_{N/2} =\frac{1}{N}\sum\limits_{i=0}^{N-1} {x_i } \left( {-1} \right)^i, \quad a_k =\frac{2}{N}\sum\limits_{i=0}^{N-1} {x_i \cos \left( {\frac{2\pi ik}{N}} \right)}, $$

$$ b_k =\frac{2}{N}\sum\limits_{i=0}^{N-1} {x_i \sin \left( {\frac{2\pi ik}{N}} \right)}, \quad i\le k<N/2. $$

Основное отличие между тремя формами преобразования Фурье заключается в том, что если интегральное преобразование Фурье определено по всей области определения функции $f(x)$, то ряд и дискретное преобразование Фурье определены только на дискретном множестве точек, бесконечном для ряда Фурье и конечном для дискретного преобразования.

Как видно из определений преобразования Фурье, наибольший интерес для систем цифровой обработки сигналов представляет дискретное преобразование Фурье. Данные, получаемые с цифровых носителей или источников информации, представляют собой упорядоченные наборы чисел, записанные в виде векторов или матриц.

Обычно принимается, что входные данные для дискретного преобразования представляют собой равномерную выборку с шагом $\Delta $, при этом величина $T=N\Delta $ называется длиной записи, или основным периодом. Основная частота равна $1/T$. Таким образом, в дискретном преобразовании Фурье производится разложение входных данных по частотам, которые являются целым кратным основной частоты. Максимальная частота, определяемая размерностью входных данных, равна $1/2 \Delta $ и называется $\it{частотой Найквиста}$. Учет частоты Найквиста имеет важное значение при использовании дискретного преобразования. Если входные данные имеют периодические составляющие с частотами, превышающими частоту Найквиста, то при вычислении дискретного преобразования Фурье произойдет подмена высокочастотных данных более низкой частотой, что может привести к ошибкам при интерпретации результатов дискретного преобразования.

Важным инструментом анализа данных является также $\it{энергетический спектр}$. Мощность сигнала на частоте $\omega $ определяется следующим образом:

$$ P \left( \omega \right)=\frac{1}{2}\left( {A \left( \omega \right)^2+B \left( \omega \right)^2} \right) . $$

Эту величину часто называют $\it{энергией сигнала}$ на частоте $\omega $. Согласно теореме Парсеваля общая энергия входного сигнала равна сумме энергий по всем частотам.

$$ E=\sum\limits_{i=0}^{N-1} {x_i^2 } =\sum\limits_{i=0}^{N/2} {P \left( {\omega _i } \right)} . $$

График зависимости мощности от частоты называется энергетическим спектром или спектром мощности. Энергетический спектр позволяет выявлять скрытые периодичности входных данных и оценивать вклад определенных частотных компонент в структуру исходных данных.

Комплексное представление преобразования Фурье.

Кроме тригонометрической формы записи дискретного преобразования Фурье широко используется $\it{комплексное представление}$. Комплексная форма записи преобразования Фурье широко используется в многомерном анализе и в частности при обработке изображений.

Переход из тригонометрической в комплексную форму осуществляется на основании формулы Эйлера

$$ e^{j\omega t}=\cos \omega t+j\sin \omega t, \quad j=\sqrt {-1} . $$

Если входная последовательность представляет собой $N$ комплексных чисел, то ее дискретное преобразование Фурье будет иметь вид

$$ G_m =\frac{1}{N}\sum\limits_{n=1}^{N-1} {x_n } e^{\frac{-2\pi jmn}{N}}, $$

а обратное преобразование

$$ x_m =\sum\limits_{n=1}^{N-1} {G_n } e^{\frac{2\pi jmn}{N}}. $$

Если входная последовательность представляет собой массив вещественных чисел, то для нее существует как комплексное, так и синусно-косинусное дискретное преобразование. Взаимосвязь этих представлений выражается следующим образом:

$$ a_0 =G_0 , \quad G_k =\left( {a_k -jb_k } \right)/2, \quad 1\le k\le N/2; $$

остальные $N/2$ значений преобразования являются комплексно сопряженными и не несут дополнительной информации. Поэтому график спектра мощности дискретного преобразования Фурье симметричен относительно $N/2$.


Быстрое преобразование Фурье.

Простейший способ вычисления дискретного преобразования Фурье (ДПФ) - прямое суммирование, оно приводит к $N$ операциям на каждый коэффициент. Всего коэффициентов $N$, так что общая сложность $O\left( {N^2} \right)$. Такой подход не представляет практического интереса, так как существуют гораздо более эффективные способы вычисления ДПФ, называемые быстрым преобразованием Фурье (БПФ), имеющее сложность $O (N\log N)$. БПФ применяется только к последовательностям, имеющим длину (число элементов), кратную степени 2. Наиболее общий принцип, заложенный в алгоритм БПФ, заключается в разбиении входной последовательности на две последовательности половинной длины. Первая последовательность заполняется данными с четными номерами, а вторая - с нечетными. Это дает возможность вычисления коэффициентов ДПФ через два преобразования размерностью $N/2$.

Обозначим $\omega _m =e^{\frac{2\pi j}{m}}$, тогда $G_m =\sum\limits_{n=1}^{(N/2)-1} {x_{2n} } \omega _{N/2}^{mn} +\sum\limits_{n=1}^{(N/2)-1} {x_{2n+1} } \omega _{N/2}^{mn} \omega _N^m $.

Для $m < N/2$ тогда можно записать $G_m =G_{\textrm{even}} \left( m \right)+G_{\textrm{odd}} \left( m \right)\omega _N^m $. Учитывая, что элементы ДПФ с индексом б ольшим, чем $N/2$, являются комплексно сопряженными к элементам с индексами меньшими $N/2$, можно записать $G_{m+(N/2)} =G_{\textrm{even}} \left( m \right)-G_{\textrm{odd}} \left( m \right)\omega _N^m $. Таким образом, можно вычислить БПФ длиной $N$, используя два ДПФ длиной $N/2$. Полный алгоритм БПФ заключается в рекурсивном выполнении вышеописанной процедуры, начиная с объединения одиночных элементов в пары, затем в четверки и так до полного охвата исходного массива данных.

Двумерное преобразование Фурье.

Дискретное преобразование Фурье для двумерного массива чисел размера $M\times N$ определяется следующим образом:

$$ G_{uw} =\frac{1}{NM}\sum\limits_{n=1}^{N-1} {\sum\limits_{m=1}^{M-1} {x_{mn} } } e^{{-2\pi j\left[ {\frac{mu}{M}+\frac{nw}{N}} \right]} }, $$

а обратное преобразование

$$ x_{mn} =\sum\limits_{u=1}^{N-1} {\sum\limits_{w=1}^{M-1} {G_{uw} } } e^{ {2\pi j\left[ {\frac{mu}{M}+\frac{nw}{N}} \right]} }. $$

В случае обработки изображений компоненты двумерного преобразования Фурье называют $\textit{пространственными частотами}$.


Важным свойством двумерного преобразования Фурье является возможность его вычисления с использованием процедуры одномерного БПФ:

$$ G_{uw} =\frac{1}{N}\sum\limits_{n=1}^{N-1} { \left[ {\frac{1}{M}\sum\limits_{m=0}^{M-1} {x_{mn} e^{\frac{-2\pi jmw}{M}}} } \right] } e^{\frac{-2\pi jnu}{N}}, $$

Здесь выражение в квадратных скобках есть одномерное преобразование строки матрицы данных, которое может быть выполнено с одномерным БПФ. Таким образом, для получения двумерного преобразования Фурье нужно сначала вычислить одномерные преобразования строк, записать результаты в исходную матрицу и вычислить одномерные преобразования для столбцов полученной матрицы. При вычислении двумерного преобразования Фурье низкие частоты будут сосредоточены в углах матрицы, что не очень удобно для дальнейшей обработки полученной информации. Для перевода получения представления двумерного преобразования Фурье, в котором низкие частоты сосредоточены в центре матрицы, можно выполнить простую процедуру, заключающуюся в умножении исходных данных на $-1^{m+n}$.

На рис. 16 показаны исходное изображение и его Фурье-образ.

3-3-16.jpg

Полутоновое изображение и его Фурье-образ (изображения получены в системе LabVIEW)

Свертка с использованием преобразования Фурье.

Свертка функций $s(t)$ и $r(t)$ определяется как

$$ s\ast r\cong r\ast s\cong \int\limits_{-\infty }^{+\infty } {s(\tau )} r(t-\tau )d\tau . $$

На практике приходится иметь дело с дискретной сверткой, в которой непрерывные функции заменяются наборами значений в узлах равномерной сетки (обычно берется целочисленная сетка):

$$ (r\ast s)_j \cong \sum\limits_{k=-N}^P {s_{j-k} r_k }. $$

Здесь $-N$ и $P$ определяют диапазон, за пределами которого $r(t) = 0$.

При вычислении свертки с помощью преобразования Фурье используется свойство преобразования Фурье, согласно которому произведение образов функций в частотной области эквивалентно свертке этих функций во временн ой области.

Для вычисления сверки необходимо преобразовать исходные данные в частотную область, то есть вычислить их преобразование Фурье, перемножить результаты преобразования и выполнить обратное преобразование Фурье, восстановив исходное представление.

Единственная тонкость в работе алгоритма связана с тем, что в случае дискретного преобразования Фурье (в отличие от непрерывного) происходит свертка двух периодических функций, то есть наши наборы значений задают именно периоды этих функций, а не просто значения на каком-то отдельном участке оси. То есть алгоритм считает, что за точкой $x_{N }$ идет не ноль, а точка $x_{0}$, и так далее по кругу. Поэтому, чтобы свертка корректно считалась, необходимо приписать к сигналу достаточно длинную последовательность нулей.

Фильтрация изображений в частотной области.

Линейные методы фильтрации относятся к числу хорошо структурированных методов, для которых разработаны эффективные вычислительные схемы, основанные на быстрых алгоритмах свертки и спектральном анализе. В общем виде линейные алгоритмы фильтрации выполняют преобразование вида

$$ f'(x,y) = \int\int f(\zeta -x, \eta -y)K (\zeta , \eta ) d \zeta d \eta , $$

где $K(\zeta ,\eta )$ - ядро линейного преобразования.

При дискретном представлении сигнала интеграл в данной формуле вырождается во взвешенную сумму отсчетов исходного изображения в пределах некоторой апертуры. При этом выбор ядра $K(\zeta ,\eta )$ в соответствии с тем или иным критерием оптимальности может привести к ряду полезных свойств (гауссовское сглаживание при регуляризации задачи численного дифференцирования изображения и др.).

Наиболее эффективно линейные методы обработки реализуются в частотной области.

Использование Фурье-образа изображения для выполнения операций фильтрации обусловлено прежде всего более высокой производительностью таких операций. Как правило, выполнение прямого и обратного двумерного преобразования Фурье и умножение на коэффициенты Фурье-образа фильтра занимает меньше времени, чем выполнение двумерной свертки исходного изображения.

Алгоритмы фильтрации в частотной области основываются на теореме о свертке. В двумерном случае преобразование свертки выглядит следующим образом:

$$ G\left( {u,v} \right)=H\left( {u,v} \right)F\left( {u,v} \right), $$

где $G$ - Фурье-образ результата свертки, $H$ - Фурье-образ фильтра, а $F$ - Фурье-образ исходного изображения. То есть в частотной области двумерная свертка заменяется поэлементным перемножением образов исходного изображения и соответствующего фильтра.

Для выполнения свертки необходимо выполнить следующие действия.


  1. Умножить элементы исходного изображения на $-1^{m+n}$, для центрирования Фурье-образа.
  2. Вычислить Фурье образ $F(u,v)$, используя БПФ.
  3. Умножить Фурье образ $F(u,v)$ на частотную функцию фильтра $H(u,v)$.
  4. Вычислить обратное преобразование Фурье.
  5. Умножить вещественную часть обратного преобразования на $-1^{m+n}$.

Как правило, фильтры описываются вещественными функциями, в этом случае каждый компонент $H$ умножается на соответствующие элементы действительной и мнимой части Фурье-образа изображения. Если исходная функция $f(x,y)$ и фильтр $H$ не комплексные, то результат свертки $g(x,y)$ также должен быть вещественной функцией. Однако на практике обратное преобразование содержит паразитную мнимую составляющую, которую надо отбросить.

Связь между функцией фильтра в частотной и пространственной области можно определить, используя теорему о свертке

$$ \Phi \left[ {f\left( {x,y} \right)\ast h(x,y)} \right]=F\left( {u,v} \right)H\left( {u,v} \right), $$

$$ \Phi \left[ {f\left( {x,y} \right)h(x,y)} \right]=F\left( {u,v} \right)\ast H\left( {u,v} \right). $$

Свертка функции с импульсной функцией может быть представлена следующим образом:

$$ \sum\limits_{x=0}^M {\sum\limits_{y=0}^N {s\left( {x,y} \right)} } \delta \left( {x-x_0 ,y-y_0 } \right)=s(x_0 ,y_0 ). $$

Фурье-преобразование импульсной функции

$$ F\left( {u,v} \right)=\frac{1}{MN}\sum\limits_{x=0}^M {\sum\limits_{y=0}^N {\delta \left( {x,y} \right) } } e^{ {-2\pi j\left( {\frac{ux}{M}+\frac{vy}{N}} \right)} } =\frac{1}{MN}. $$

Пусть $f(x,y) = \delta (x,y)$, тогда свертка

$$ f\left( {x,y} \right)\ast h(x,y)=\frac{1}{MN}h\left( {x,y} \right), $$

$$ \Phi \left[ {\delta \left( {x,y} \right)\ast h(x,y)} \right]=\Phi \left[ {\delta \left( {x,y} \right)} \right]H\left( {u,v} \right)=\frac{1}{MN}H\left( {u,v} \right). $$

Из этих выражений видно, что функции фильтра в частотной и пространственной областях взаимосвязаны через преобразование Фурье. Для данной функции фильтра в частотной области всегда можно найти соответствующий фильтр в пространственной области, применив обратное преобразование Фурье. То же верно и для обратного случая. Используя данную взаимосвязь, можно определить процедуру синтеза пространственных линейных фильтров.


  1. Определяем требуемые характеристики (форму) фильтра в частотной области.
  2. Выполняем обратное преобразование Фурье.
  3. Полученный фильтр можно использовать как маску для пространственной свертки, при этом размеры маски можно уменьшить по сравнению с размерами исходного фильтра.


{$\textit{Идеальный фильтр низких частот}$} $H(u,v)$ имеет вид $$H(u,v) = 1, \quad \mbox{если }D(u,v) < D_0 ,$$ $$H(u,v) = 0, \quad \mbox{если }D(u,v) \ge D_0 ,$$ где $D\left( {u,v} \right)=\sqrt {\left( {u-\frac{M}{2}} \right)^2+\left( {v-\frac{N}{2}} \right)^2}$ - расстояние от центра частотной плоскости.

После свертки с этим фильтром на результирующем изображении появляются паразитные искажения в виде полутоновых ложных границ.

{$\textit{Идеальный высокочастотный фильтр}$} получается путем инверсии идеального низкочастотного фильтра:

$$ H'(u,v) = 1-H(u,v). $$

Здесь происходит полное подавление низкочастотных компонент при сохранении высокочастотных. Однако как и в случае идеального низкочастотного фильтра, его применение чревато появлением существенных искажений.

Для синтеза фильтров с минимальными искажениями используются различные подходы. Одним из них является синтез фильтров на основе экспоненты. Такие фильтры привносят минимальные искажения в результирующее изображение и удобны для синтеза в частотной области.

Широко используемым при обработке изображений является семейство фильтров на основании вещественной функции Гаусса.

$\textit{Низкочастотный гауссовский фильтр}$ имеет вид

$$ h\left( x \right)=\sqrt {2\pi } \sigma Ae^{-2\left( {\pi \sigma x} \right)^2} \mbox{ и } H\left( u \right)=Ae^{-\frac{u^2}{2\sigma ^2}} $$

Чем уже профиль фильтра в частотной области (чем больше $\sigma $), тем он шире в пространственной.

{$\textit{Высокочастотный гауссовский фильтр}$} имеет вид

$$ h\left( x \right)=\sqrt {2\pi } \sigma _A Ae^{-2\left( {\pi \sigma _A x} \right)^2}-\sqrt {2\pi } \sigma _B Be^{-2\left( {\pi \sigma _B x} \right)^2 }, $$

$$ H\left( u \right)=Ae^{-\frac{u^2}{2\sigma _A^2 }}-Be^{-\frac{u^2}{2\sigma _B^2 }}. $$

В двумерном случае {$\it{низкочастотный}$} фильтр гаусса выглядит следующим образом:

$$ H\left( {u,v} \right)=e^{-\frac{D^2\left( {u,v} \right)}{2D_0^2 }}. $$

{$\it{Высокочастотный}$} гауссовский фильтр имеет вид

$$ H\left( {u,v} \right)=1-e^{-\frac{D^2\left( {u,v} \right)}{2D_0^2 }}. $$

Рассмотрим пример фильтрации изображения (рис. 1) в частотной области (рис. 17 - 22). Заметим, что частотная фильтрация изображения может иметь смысл как сглаживания ($\textit{низкочастотная фильтрация}$), так и выделения контуров и мелкоразмерных объектов ($\textit{высокочастотная фильтрация}$).

Как видно из рис. 17, 19, по мере нарастания "мощности" фильтрации в низкочастотной составляющей изображения все сильнее проявляется эффект "кажущейся расфокусировки" или $\it{размытия}$ изображения. В то же время в высокочастотную составляющую, где в начале наблюдаются лишь контура объектов, постепенно переходит большая часть информационного содержания изображения (рис. 18, 20 - 22).

3-3-17.jpg 3-3-18.jpg
Низкочастотная фильтрация с параметрами $(10,10)$ Высокочастотная фильтрация с параметрами $(10,10)$
3-3-19.jpg 3-3-20.jpg
Низкочастотная фильтрация с параметрами $(50,50)$ Высокочастотная филь\-трация с параметрами $(50,50)$
3-3-21.jpg 3-3-22.jpg
Высокочастотная фильтрация с параметрами $(100,100)$ Высокочастотная фильтрация с параметрами $(200,200)$
3-3-23.jpg 3-3-24.jpg
НЧ-фильтрация зашумленного изображения $(10,10)$ ВЧ-фильтрация зашумленного изображения $(10,10)$
3-3-25.jpg 3-3-26.jpg
НЧ-фильтрация зашумленного изображения $(50,50)$ ВЧ-фильтрация зашумленного изображения $(50,50)$

Рассмотрим теперь поведение высокочастотных и низкочастотных фильтров (рис. 23 - 28) в присутствии аддитивного гауссовского шума на изображении (рис. 7).

Как видно из рис. 23, 25, свойства низкочастотных фильтров по подавлению аддитивной случайной помехи аналогичны свойствам ранее рассмотренных линейных фильтров - при достаточной мощности фильтра помехи подавляются, однако платой за это является сильное размытие контуров и "расфокусировка" всего изображения. Высокочастотная составляющая зашумленного изображения перестает быть информативной, так как помимо контурной и объектовой информации там теперь также полностью присутствует и шумовая компонента (рис. 27, 28).

3-3-27.jpg 3-3-28.jpg
ВЧ-фильтрация зашумленного изображения $(100,100)$ ВЧ-фильтрация зашумленного изображения $(200,200)$

Применение частотных методов наиболее целесообразно в случае, когда известны статистическая модель шумового процесса или/и оптическая передаточная функция канала передачи изображения. Учесть такие априорные данные удобно, выбрав в качестве восстанавливающего фильтра обобщенный управляемый (параметрами $\sigma$ и $\mu$) фильтр следующего вида:

$$ F(w_1,w_2)= \left[ { \frac {1} {P(w_1,w_2)} }\right] \cdot \left[ {\frac {{\vert P(w_1,w_2) \vert }^2} {\vert P(w_1,w_2) \vert ^2 + \alpha \vert Q(w_1,w_2) \vert ^2} }\right]. $$

где $0 < \sigma < 1$, $0 < \mu < 1$ - назначаемые параметры фильтра, $P(w_{1}$, $w_{2})$ - передаточная функция системы, $Q(w_{1}$, $w_{2})$ - стабилизатор фильтра, согласованный с энергетическим спектром фона. Выбор параметров $\sigma = 1$, $\mu = 0$ приводит к чисто инверсной фильтрации, $\sigma =\mu = 1$ к \it{винеровской фильтрации}, что позволяет получить изображение, близкое к истинному в смысле минимума СКО при условии, что спектры плотности мощности изображения и его шумовой компоненты априорно известны. Для дальнейшего улучшения эффекта сглаживания в алгоритм линейной (винеровской) фильтрации вводят адаптацию, основанную на оценке локальных статистик: математического ожидания $M(P)$ и дисперсии $\sigma (P)$. Этот алгоритм эффективно фильтрует засоренные однородные поверхности (области) фона. Однако при попадании в скользящее окно обработки неоднородных участков фона импульсная характеристика фильтра сужается ввиду резкого изменения локальных статистик, и эти неоднородности (контуры, пятна) передаются практически без расфокусировки, свойственной неадаптивным методам линейной фильтрации.

К достоинствам методов линейной фильтрации следует отнести их ясный физический смысл и простоту анализа результатов. Однако при резком ухудшении соотношения сигнал/шум, при возможных вариантах площадного зашумления и наличии высокоамплитудного импульсного шума линейные методы предварительной обработки могут оказаться недостаточными. В этой ситуации значительно более мощными оказываются нелинейные методы.

Полезные ссылки

  1. ☝ К началу
  2. ☜ Линейная фильтрация изображений в пространственной и частотной области
Личные инструменты
Пространства имён

Варианты
Действия
Навигация
Инструменты