Постобработка контурного изображения

Материал из Техническое зрение
Перейти к: навигация, поиск

Локализация края.

Градиентные операторы выделяют даже незначительные перепады интенсивности (рис. 14), поэтому необходимо решить вопрос, какой из перепадов действительной является краем, а какой является результатом наличия шумов на исходном изображении.

Одним из способов решения поставленной задачи является пороговая фильтрация, основная идея которой заключается в фильтрации точек, значения перепадов в которых меньше определенного порога. При этом значение модуля градиента $G(x,y)$ в каждой точке изображения сравнивается с некоторым порогом. Точки, перепад интенсивности в которых меньше порога, считаются шумами и фильтруются:

$$ G(x,y)= \begin{cases} 0, & \mbox{ если }G(x,y)\leqslant T, \cr 1, & \mbox{ если }G(x,y)> T. \end{cases} $$

Порог фильтрации может быть фиксирован или определятся адаптивно. Выбор порога является одним из основных вопросов локализации краев. Высокий уровень порога не позволит обнаружить слабовыраженные края. Низкий уровень порога явится причиной того, что шум будет ложно принят за край. Например, может быть использована следующая модификация сигма-фильтра:

$$ T=M_0+\alpha \sigma , $$

где $\alpha $ - параметр фильтрации; $M_0 $ - среднее значение модуля градиента; $\sigma $ - значение СКО модуля градиента изображения.

3-4-14.jpg

Результат подчеркивания краев: $\it{a}$ - исходное изображение; $\it{б}$ - модуль градиента изображения

Таким образом, результатом процедуры локализации краев является бинарное изображение, в котором точки, принадлежащие краю, отличны от нуля. Результат локализации краев представлен на рис. 15.


Утончение контура.

Завершающей процедурой этапа выделения краев является $\it{утончение}$. Основная задача процедуры утончения - получение контурного препарата единичной ширины поперечного сечения. Использование процедуры утончения

3-4-15.jpg 3-4-16.jpg
Результат локализации краев ($\sigma = 1)$ Результат уточнения градиентного изображения

обусловлено существенным упрощением процедур описания и распознавания объектов. Существует ряд требований, предъявляемых к алгоритмам утончения:


  1. если объект - связный, то результат утончения должен быть связным

(операция утончения не должна менять топологию объекта);

  1. средняя линия, полученная после утончения должна проходить через

точки с наибольшим значением интенсивности.

Например, может быть использован алгоритм утончения, на вход которого поступает полутоновое изображение, полученное в результате выполнения следующей алгебраической операции:

$$ I=I_G \cdot I_B , $$

где $I_G $ - градиентное изображение (результат работы оператора дискретного дифференцирования); $I_B $ - бинарное изображение (результат пороговой фильтрации).

Утончение полутоновых изображений является более сложной задачей, чем утончение бинарных изображений. Идея такого алгоритма может заключаеться, например, в поиске точек на изображении, имеющих максимальное значение проекции градиента в направлении, перпендикулярном направлению края в точке. В каждой точке изображения $I$ производится проверка условия, и если точка не является локальным максимумом в направлении, нормальном к направлению края, то она исключается из дальнейшего рассмотрения. Результатом работы алгоритма является бинарное изображение, на котором контурные точки выделены черным цветом (рис. 16).

Полезные ссылки

  1. ☝ К началу
  2. ☜ Выделение контурных точек
Личные инструменты
Пространства имён

Варианты
Действия
Навигация
Инструменты