Оптическое распознавание символов (OCR)

Материал из Техническое зрение
Перейти к: навигация, поиск

Задача распознавания текстовой информации при переводе печатного и рукописного текста в электронную форму является одной из важнейших составляющих любого проекта, имеющего целью автоматизацию документооборота или внедрение безбумажных технологий. Вместе с тем эта задача является одной из наиболее сложных и наукоемких задач полностью автоматического анализа изображений. Даже человек, читающий рукописный текст, в отрыве от контекста, делает в среднем около $4${\%} ошибок. Между тем, в наиболее ответственных приложениях OCR необходимо обеспечивать более высокую надежность распознавания (свыше 99{\%}) даже при плохом качестве печати и оцифровки исходного текста.

В последние десятилетия, благодаря использованию современных достижений компьютерных технологий, были развиты новые методы обработки изображений и распознавания образов, благодаря чему стало возможным создание таких промышленных систем распознавания печатного текста, как например, FineReader, которые удовлетворяют основным требованиям систем автоматизации документооборота. Тем не менее, создание каждого нового приложения в данной области по-прежнему остается творческой задачей и требует дополнительных исследований в связи со специфическими требованиями по разрешению, быстродействию, надежности распознавания и объему памяти, которыми характеризуется каждая конкретная задача.

Содержание

Типовые проблемы, связанные с распознаванием символов.

Имеется ряд существенных проблем, связанных с распознаванием рукописных и печатных символов. Наиболее важные из них следующие:


  1. разнообразие форм начертания символов;
  2. искажение изображений символов;
  3. вариации размеров и масштаба символов.


Каждый отдельный символ может быть написан различными стандартными шрифтами, например (Times, Gothic, Elite, Courier, Orator), а также - множеством нестандартных шрифтов, используемых в различных предметных областях. При этом различные символы могут обладать сходными очертаниями. Например, "U" и "V", "S" и "5", "Z" и "2", "G" и "6".

Искажения цифровых изображений текстовых символов могут быть вызваны:


  1. шумами печати, в частности, непропечаткой (разрывами слитных черт символов), "слипанием" соседних символов, пятнами и ложными точками на фоне вблизи символов и т. п.;
  2. смещением символов или частей символов относительно их ожидаемого положения в строке;
  3. изменением наклона символов;
  4. искажением формы символа за счет оцифровки изображения с "грубым" дискретом;
  5. эффектами освещения (тени, блики и т. п.) при съемке видеокамерой.


Существенным является и влияние исходного масштаба печати. В принятой терминологии масштаб $10$, $12$ или $17$ означает, что в дюйме строки помещаются $10$, $12$ или $17$ символов. При этом, например, символы масштаба $10$ обычно крупнее и шире символа масштаба $12$.

Система оптического распознавания текста (OCR), должна выделять на цифровом изображении текстовые области, выделять в них отдельные строки, затем - отдельные символы, распознавать эти символы и при этом быть нечувствительной (устойчивой) по отношению к способу верстки, расстоянию между строками и другим параметрам печати.

Структура систем оптического распознавания текстов.

Системы OCR состоят из следующих основных блоков, предполагающих аппаратную или программную реализацию:


  1. блок сегментации (локализации и выделения) элементов текста;
  2. блок предобработки изображения;
  3. блок выделения признаков;
  4. блок распознавания символов;
  5. блок постобработки результатов распознавания.


Эти алгоритмические блоки соответствуют последовательным шагам обработки и анализа изображений, выполняемым последовательно.

Сначала осуществляется выделение $\textit{текстовых областей, строк}$ и разбиение связных текстовых строк на отдельные $\textit{знакоместа}$, каждое из которых соответствует одному текстовому символу.

После разбиения (а иногда до или в процессе разбиения) символы, представленные в виде двумерных матриц пикселов, подвергаются сглаживанию, фильтрации с целью устранения шумов, нормализации размера, а также другим преобразованиям с целью выделения образующих элементов или численных признаков, используемых впоследствии для их распознавания.

Распознавание символов происходит в процессе сравнения выделенных характерных признаков с эталонными наборами и структурами признаков, формируемыми и запоминаемыми в процессе обучения системы на эталонных и/или реальных примерах текстовых символов.

На завершающем этапе смысловая или контекстная информация может быть использована как для разрешения неопределенностей, возникающих при распознавании отдельных символов, обладающих идентичными размерами, так и для корректировки ошибочно считанных слов и даже фраз в целом.

Методы предобработки и сегментации изображений текстовых символов.

Предобработка является важным этапом в процессе распознавания символов и позволяет производить сглаживание, нормализацию, сегментацию и аппроксимацию отрезков линий.

Под $\textit{сглаживанием}$ в данном случае понимается большая группа процедур обработки изображений, многие из которых были рассмотрены в главе $3$ данной книги. В частности, широко используются морфологические операторы $\textit{заполнения}$ и $\textit{утончения}$. $\textit{Заполнение}$ устраняет небольшие разрывы и пробелы. $\textit{Утончение}$представляет собой процесс уменьшения толщины линии, в которой на каждом шаге области размером в несколько пикселов ставится в соответствие только один пиксел "утонченной линии". Морфологический способ реализации подобных операций на базе операторов расширения и сжатия Серра был описан в главе $3.2$.

Там же описан и специальный алгоритм бинарной фильтрации изображений текстовых символов, получивший название $\textit{стирание бахромы}$. Под "бахромой" здесь понимаются неровности границ символа, которые мешают, во-первых, правильно определить его размеры, а во-вторых, искажают образ символа и мешают его дальнейшему распознаванию по контурному признаку.

$\textit{Геометрическая нормализация}$ изображений документов подразумевает использование алгоритмов, устраняющих наклоны и перекосы отдельных символов, слов или строк, а также включает в себя процедуры, осуществляющие нормализацию символов по высоте и ширине после соответствующей их обработки.

Процедуры $\textit{сегментации}$ осуществляют разбиение изображения документа на отдельные области. Как правило, прежде всего необходимо отделить печатный текст от графики и рукописных пометок. Далее большинство алгоритмов оптического распознавания разделяют текст на символы и распознают их по отдельности. Это простое решение действительно наиболее эффективно, если только символы текста не перекрывают друг друга. Слияние символов может быть вызвано типом шрифта, которым был набран текст, плохим разрешением печатающего устройства или высоким уровнем яркости, выбранным для восстановления разорванных символов.

Дополнительное разбиение текстовых областей и строк на $\textit{слова}$ целесообразно в том случае, если слово является состоятельным объектом, в соответствии с которым выполняется распознавание текста. Подобный подход, при котором единицей распознавания является не отдельный символ, а целое слово, сложно реализовывать из-за большого числа элементов, подлежащих запоминанию и распознаванию, но он может быть полезен и весьма эффективен в конкретных частных случаях, когда набор слов в кодовом словаре существенно ограничен по условию задачи.

Под $\textit{аппроксимацией отрезков линий}$ понимают составление графа описания символа в виде набора вершин и прямых ребер, которые непосредственно аппроксимируют цепочки пикселов исходного изображения. Данная аппроксимация осуществляется для уменьшения объема данных и может использоваться при распознавании, основанном на выделении признаков, описывающих геометрию и топологию изображения.

Признаки символов, используемые для автоматического распознавания текста.

Считается, что выделение признаков является одной из наиболее трудных и важных задач в распознавании образов. Для распознавания символов может быть использовано большое количество различных систем признаков. Проблема заключается в том, чтобы выделить именно те признаки, которые позволят эффективно отличать один класс символов от всех остальных в данной конкретной задаче.

Ниже описан ряд основных методов распознавания символов и соответствующих им типов признаков, вычисляемых на основе цифрового изображения.

Сопоставление изображений и шаблонов.

Эта группа методов основана на непосредственном сравнении изображений тестового и эталонного символов. При этом вычисляется $\textit{степень сходства}$ между образом и каждым из эталонов. Классификация тестируемого изображения символа происходит по методу ближайшего соседа. Ранее мы уже рассматривали методы сравнения изображений в разделе 4.2, а именно - методы корреляции и согласованной фильтрации изображений.

С практической точки зрения эти методы легко реализовать, и многие коммерческие системы OCR используют именно их. Однако при "лобовой" реализации корреляционных методов даже небольшое темное пятнышко, попавшее на внешний контур символа, может существенно повлиять на результат распознавания. Поэтому для достижения хорошего качества распознавания в системах, использующих сопоставление шаблонов, применяются другие, специальные способы сравнения изображений.

Одна из основных модификаций алгоритма сравнения шаблонов использует представление шаблонов в виде набора логических правил. Например, символ

0000000000
000aabb000
00aeeffb00
0ae0000fb0
0ae0ii0fb0
0ae0ii0fb0
0ae0000fb0
0cg0000hd0
0cg0jj0hd0
0cg0jj0hd0
0cg0000hd0
00cgghhd00
000ccdd000
0000000000

может быть распознан как "ноль", если: (не менее $5$ символов "a" являются "1" или не менее $4$ символов $\text{"e"} = \text{"1"}$) И (не менее $5$ символов "b" являются "1" или не менее $4$ символов $\text{"f"} = \text{"1"}$) И (не менее $5$ символов "c" являются "1" или не менее $4$ символов $\text{"g"} = \text{"1"}$) И (не менее $5$ символов "d" являются "1" или не менее $4$ символов $\text{"h"} = \text{"1"}$) И (по крайней мере $3$ символа "i" являются "0") И (по крайней мере $3$ символа "j" являются "0").

Статистические характеристики.

В данной группе методов выделение признаков осуществляется на основе анализа различных по статистических распределений точек. Наиболее известные методики этой группы используют $\textit{вычисление моментов}$ $\textit{и подсчет пересечений}$.

$\textit{Моменты различных порядков}$ с успехом используются в самых различных областях машинного зрения в качестве дескрипторов формы выделенных областей и объектов (см. раздел 4.1). В случае распознавания текстовых символов в качестве набора признаков используют значения моментов совокупности "черных" точек относительно некоторого выбранного центра. Наиболее общеупотребительными в приложениях такого рода являются построчные, центральные и нормированные моменты.

Для цифрового изображения, хранящегося в двумерном массиве, $\textit{построчные моменты}$ являются функциями координат каждой точки изображения следующего вида: $$ m_{pq} =\sum\limits_{x=0}^{M-1} {\sum\limits_{y=0}^{N-1} {x^py^qf(x,y)} } , $$ где $p,q \in \{0,1,\ldots ,\infty \}$; $M$ и $N$ являются размерами изображения по горизонтали и вертикали и $f(x,y)$ является яркостью пиксела в точке $\langle x,y\rangle$ на изображении.

$\textit{Центральные моменты}$ являются функцией расстояния точки от центра тяжести символа: $$ m_{pq} =\sum\limits_{x=0}^{M-1} {\sum\limits_{y=0}^{N-1} {(x-\mathop x\limits^\_ )^p(y-\mathop y\limits^\_ )^qf(x,y)} } , $$ где $x$ и $y$ "с чертой" - координаты центра тяжести.

$\textit{Нормированные центральные моменты}$ получаются в результате деления центральных моментов на моменты нулевого порядка.

Следует отметить, что строковые моменты, как правило, обеспечивают более низкий уровень распознавания. Центральные и нормированные моменты более предпочтительны вследствие их большей инвариантности к преобразованиям изображений.

В $\textit{методе пересечений}$ признаки формируются путем подсчета того, сколько раз и каким образом произошло пересечение изображения символа с выбранными прямыми, проводимыми под определенными углами. Этот метод часто используется в коммерческих системах благодаря тому, что он инвариантен к дисторсии и небольшим стилистическим вариациям написания символов, а также обладает достаточно высокой скоростью и не требует высоких вычислительных затрат. На рис. 1 показано эталонное изображение символа $R$, система секущих прямых, а также вектор расстояний до эталонных векторов. На рис. 2 представлен пример реального изображения

7-2-1.jpg

Пример формирования набора пересечений для эталонного изображения символа $R$

7-2-2.jpg

Пример формирования набора пересечений для реального изображения символа $R$


7-2-3.jpg

Пример формирования зонного описания для эталонного изображения символа $R$

7-2-4.jpg

Пример формирования зонного описания для реального изображения символа $R$; $K = 0{,}387$

символа $R$. Цветом (см. цветную вклейку) также помечена строка, соответствующая ближайшему соседу.

$\textit{Метод зон}$ предполагает разделение площади рамки, объемлющий символ, на области и последующее использование плотностей точек в различных областях в качестве набора характерных признаков. На рис. 3 показано эталонное изображение символа $R$, а на рис. 4 - реальное изображение символа $R$, полученное путем сканирования изображения документа. На обоих изображениях приводятся разбиение на зоны, пиксельные веса каждой зоны, а также вектор расстояний до эталонных векторов эталонных символов. Цветом помечена строка, соответствующая найденному ближайшему соседу.

В методе $\textit{матриц смежности}$ в качестве признаков рассматриваются частоты совместной встречаемости "черных" и "белых" элементов в различных геометрических комбинациях. Метод $\textit{характеристических мест}$ (characteristic-loci) использует в качестве признака число раз, которое вертикальный и горизонтальный векторы пересекают отрезки линий для каждой светлой точки в области фона символа.

Существует также множество других методов данной группы.



Интегральные преобразования.

Среди современных технологий распознавания, основанных на преобразованиях, выделяются методы, использующие Фурье-дескрипторы символов, а также частотные дескрипторы границ.

Преимущества методов, использующих преобразования Фурье - Меллина, связаны с тем, что они обладают инвариантностью к масштабированию, вращению и сдвигу символа. Основной недостаток этих методов заключается в нечувствительности к резким скачкам яркости на границах, к примеру, по спектру пространственных частот сложно отличить символ "O" от символа "Q" и т. п. В то же время, при фильтрации шума на границах символа, это свойство может оказаться полезным.

Анализ структурных составляющих.

Структурные признаки обычно используются для выделения общей структуры образа. Они описывают геометрические и топологические свойства символа. Проще всего представить идею структурного распознавания символа текста применительно к задаче автоматического считывания почтовых индексов. В таких "трафаретных" шрифтах положение каждого возможного отрезка-штриха заранее известно, и один символ отличается от другого не менее чем наличием или отсутствием целого штриха. Аналогичная задача возникает и в случае контроля простых жидкокристаллических индикаторов. В таких системах выделение структурных составляющих сводится к анализу элементов заранее известного трафарета (набора отрезков, подлежащих обнаружению).

В системах структурного распознавания более сложных шрифтов часто используемыми признаками также являются штрихи, применяемые для определения следующих характерных особенностей изображения: $\textit{концевых точек}$, $\textit{точек пересечения отрезков}$, $\textit{замкнутых циклов}$, а также их положения относительно рамки, объемлющей символ. Рассмотрим, например, следующий способ структурного описания символа. Пусть матрица, содержащая утонченный символ, разделена на девять прямоугольных областей (в виде сетки $33$), каждой из которых присвоен буквенный код от "A" до "I". Символ рассматривается как набор штрихов. При этом штрих, соединяющий некоторые две точки в начертании символа, может являться линией (L) или кривой (C). Штрих считается $\textit{отрезком (дугой)}$ $\textit{кривой}$, если его точки удовлетворяют следующему выражению $$ \left| \frac {1}{n} \sum\limits_{i=1}^n \frac {ax_i +by_i +c}{\sqrt{a^2+b^2}} \right| >0{,}69, $$ в противном случае считается, что это $\textit{прямолинейный отрезок}$. В данной формуле $\langle x_{i},y_{i}\rangle$ является точкой, принадлежащей штриху; $ax+by+c=0$ - уравнение прямой, проходящей через концы штриха, коэффициент $0{,}69$ получен опытным путем. Далее символ может быть описан набором своих отрезков и дуг. Например, запись \{"ALC", "ACD"\} означает наличие прямой, проходящей из области "A" в область "C", и кривой, проходящей из области "A" в область "D" соответственно.

Основное достоинство структурных методов распознавания определятся их устойчивостью к сдвигу, масштабированию и повороту символа на небольшой угол, а также - к возможным дисторсиям и различным стилевым вариациям и небольшим искажениям шрифтов.

Классификация символов.

В существующих системах OCR используются разнообразные алгоритмы $\textit{классификации}$, то есть отнесения признаков к различным классам. Они существенно различаются в зависимости от принятых наборов признаков и применяемой по отношению к ним стратегии классификации.

Для признаковой классификации символов необходимо, в первую очередь, сформировать набор эталонных векторов признаков по каждому из распознаваемых символов. Для этого на стадии $\textit{обучения}$ оператор или разработчик вводит в систему OCR большое количество образцов начертания символов, сопровождаемых указанием значения символа. Для каждого образца система выделяет признаки и сохраняет их в виде соответствующего $\textit{вектора признаков}$. Набор векторов признаков, описывающих символ, называется $\textit{классом}$, или $\textit{кластером}$.

В процессе эксплуатации системы OCR может появиться необходимость расширить сформированную ранее базу знаний. В связи с этим некоторые системы обладают возможностью $\textit{дообучения}$ в реальном режиме времени.

Задачей собственно $\textit{процедуры классификации}$ или $\textit{распознавания}$, выполняемой в момент предъявления системе тестового изображения символа, является определение того, к какому из ранее сформированных классов принадлежит вектор признаков, полученный для данного символа. Алгоритмы классификации основаны на определении степени близости набора признаков рассматриваемого символа к каждому из классов. Правдоподобие получаемого результата зависит от выбранной метрики пространства признаков. Наиболее известной метрикой признакового пространства является традиционное Евклидово расстояние


$$ D_j^E = \sqrt{\sum\limits_{i=1}^N {(F_{ji}^L -F_i^l )^2}}, $$ где $F_{ji}^L$ - $i$-й признак из $j$-го эталонного вектора; $F_i^l $ - $i$-й признак тестируемого изображения символа.

При классификации по методу $\textit{ближайшего соседа}$ символ будет отнесен к классу, вектор признаков которого наиболее близок к вектору признаков тестируемого символа. Следует учитывать, что затраты на вычисления в таких системах возрастают с увеличением количества используемых признаков и классов.

Одна из методик, позволяющих улучшить метрику сходства, основана на статистическом анализе эталонного набора признаков. При этом в процессе классификации более надежным признакам отдается больший приоритет: $$ D_j^E =\sqrt{\sum\limits_{i=1}^N {w_i (F_{ji}^L -F_i^l )^2}}, $$


где $w_{i}$ - вес $i$-го признака.

Другая методика классификации, требующая знания априорной информации о вероятностной модели текста, основана на использовании формулы Байеса. Из правила Байеса следует, что рассматриваемый вектор признаков принадлежит классу "$j$", если отношение правдоподобия $\lambda $ больше, чем отношение априорной вероятности класса $j$ к априорной вероятности класса $i$.

Постобработка результатов распознавания.

В ответственных системах OCR качество распознавания, получаемое при распознавании отдельных символов, не считается достаточным. В таких системах необходимо использовать также контекстную информацию. Использование контекстной информации позволяет не только находить ошибки, но и исправлять их.

Существует большое колличество приложений OCR, использующих глобальные и локальные позиционные диаграммы, триграммы, $n$-граммы, словари и различные сочетания всех этих методов. Рассмотрим два подхода к решению этой задачи: $\textit{словарь}$ и $\textit{набор бинарных матриц}$, аппроксимирующих структуру словаря.

Доказано, что словарные методы являются одними из наиболее эффективных при определении и исправлении ошибок классификации отдельных символов. При этом после распознавания всех символов некоторого слова словарь просматривается в поисках этого слова, с учетом того, что оно, возможно, содержит ошибку. Если слово найдено в словаре, это не говорит об отсутствии ошибок. Ошибка может превратить одно слово, находящееся в словаре, в другое, также входящее в словарь. Такая ошибка не может быть обнаружена без использования смысловой контекстной информации: только она может подтвердить правильность написания. Если слово в словаре отсутствует, считается, что в слове допущена ошибка распознавания. Для исправления ошибки прибегают к замене такого слова на наиболее похожее слово из словаря. Исправление не производится, если в словаре найдено несколько подходящих кандидатур для замены. В этом случае интерфейс некоторых систем позволяет показать слово пользователю и предложить различные варианты решения, например, исправить ошибку, игнорировать ее и продолжать работу или внести это слово в словарь. Главный недостаток в использовании словаря заключается в том, что операции поиска и сравнения, применяющиеся для исправления ошибок, требуют значительных вычислительных затрат, возрастающих с увеличением объема словаря.

Некоторые разработчики с целью преодоления трудностей, связанных с использованием словаря, пытаются выделять информацию о структуре слова из самого слова. Такая информация говорит о степени правдоподобия $\textit{n-грамм}$ (символьных последовательностей, например, пар или троек букв) в тексте, которые также могут быть глобально позиционированными, локально позиционированными или вообще непозиционированными. Например, степень достоверности непозиционированной пары букв может быть представлена в виде бинарной матрицы, элемент которой равен 1 тогда и только тогда, когда соответствующая пара букв имеется в некотором слове, входящем в словарь. Позиционная бинарная диаграмма $D_{ij}$ является бинарной матрицей, определяющей, какая из пар букв имеет ненулевую вероятность возникновения в позиции $\langle i,j\rangle$. Набор всех позиционных диаграмм включает бинарные матрицы для каждой пары положений.

Полезные ссылки

  1. ☝ К началу
  2. ☜ Обработка документов, распознавание текста и штриховых кодов
Личные инструменты
Пространства имён

Варианты
Действия
Навигация
Инструменты